
Eur. Phys. J. D 17, 319–328 (2001) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. We present a new determination of the potential curves and interactions of the coupled electronic
states A 1Σ+

u and b 3Πu of the potassium dimer, based on new laser spectroscopy measurements within
a molecular beam, combined with data available in the literature. We used a new global deperturbation
approach, involving the Fourier Grid Hamiltonian method for energy level calculation. A standard deviation
of 1.2 is obtained corresponding to a variance of 7.5× 10−3 cm−1, representing a significant improvement
compared to the standard deviation of 4 yielded by the traditional local deperturbation approach.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 34.50.Rk Laser-modified scattering and reactions

1 Introduction

One major goal of molecular spectroscopy is the extrac-
tion of parameters describing the internal dynamics of
molecules from measured transition energies. Due to their
simplicity, diatomic molecules offer the possibility to test
with a very high accuracy, inversion methods yielding po-
tential energy and various spectroscopic constants. The
traditional approach consists first in fitting observed tran-
sition energies to an analytical expression for energy lev-
els involving vibrational and rotational quantum numbers,
and second by an iterative calculation of the potential
energy curve using the semi-classical Rydberg-Klein-Rees
(RKR) method [1–4]. The RKR method is intrinsically
limited to single-state single-well potential determination,
and cannot deal with couplings of several states like in
the breakdown of the Born-Oppenheimer approximation.
In order to overcome these limitations, approaches based
on direct fits of observed data to potential energy func-
tions have been developed for atom-diatom van der Waals
systems [5]1. For diatomic molecules, it is known as the
Inverted Perturbation Analysis (IPA) [6,7], and has been
widely used to determine corrections to RKR potential
curves. Among the most recent developments on the in-
version of level energies to a potential, elaborated fully
analytical potential functions have been employed to fit a
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is taken as coupling potential yealding a system of coupled
equations which then shows some physical similarity to the
present problem.

large set of transition energies, even taking into account
the long-range behaviour of the potential curve, varying
as an inverse power law R−n with the interatomic distance
R (see [8], and references therein, and [9,10]).

However, all the above studies are dealing with single
potential determinations. In the present work, we propose,
for the first time to our knowledge, a direct generaliza-
tion of the inversion procedure to the determination of
several coupled potential curves, using a new flexible ana-
lytical function for potential representation [10], together
with the recently developed mapped Fourier grid method
(MFGH) [11] for eigenvalue computation. Indeed, it ap-
peared during the analysis, that standard deperturbation
methods based on an energy-localized modeling of level
interactions [12], were not able to fully interpret the ob-
served transitions. Let us mention that a first attempt to
perform a coupled state analysis for the determination of
the asymptotic potential has been proposed in a simpli-
fied way, for the treatment of cold-atom photoassociation
spectra [13].

We study here the A 1Σ+
u and b 3Πu excited elec-

tronic states of the K2 molecule, coupled by spin-orbit
interaction (see Fig. 1). The motivation comes from our
recent development of a molecular interferometer with
K2 molecules [14], involving the population of rovibra-
tional levels of the long-lived b 3Πu state, by perturba-
tion facilitated excitation. This is a long-known exam-
ple of singlet-triplet mixing in alkali dimers [15], which
has been extensively studied in the past for the lightest
species Li2 [16–18], Na2 [19,20], and K2 [21–23], and more
recently for Rb2 [24]. The A ∼ b coupling in alkali dimers
is also a textbook example of perturbations in molecular
spectroscopy [12]. Due to near-degeneracy of energy levels
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Fig. 1. Schematic view of the K2 potential curves involved in
the present study. The explored energy range is indicated as
shaded area.

with same total angular momentum J , but belonging to
different electronic states, the regularity of the spectrum
(energy position or intensity of transition lines) is per-
turbed by their coupling. In contrast with the lightest
species, the perturbation is so strong in the Rb2 molecule
that the entire regularity of the spectrum is apparently
lost [24]. At the high level of spectroscopic accuracy, such
a situation also occurs in K2, which is successfully treated
with the proposed coupled inversion method.

The paper is organized as follows: we recall in Section 2
the Hamiltonian describing the present system. The ex-
perimental set-up, using a molecular beam apparatus is
briefly presented in Section 3 together with an example
of recorded spectra, which is shown to complement previ-
ously published [22,23], and unpublished studies [25,26].
We give in Section 4 the results of our local deperturbation
analysis. Our coupled inversion procedure is described in
Section 5, resulting for the global deperturbation analysis
of the spectra in improved potential curves for the A and
b states of K2, and accurate values for interaction terms.

2 Couplings between A 1Σ+
u and b 3Πu states

The Born-Oppenheimer states A 1Σ+
u and b 3Πu, de-

scribed in Hund’s coupling case a, are assumed to interact
mainly through spin-orbit and rotational coupling [12].
The spin-orbit coupling is represented in the deeply
bound region of the potential as diagonal terms in the
Hamiltonian and leads to the fine structure splitting of
the 3 components of the b state, varying with the internu-
clear distance R:

〈b Ω = 0|HSO|b Ω = 0〉 = −A(R)

〈b Ω = 1|HSO|b Ω = 1〉 = 0

〈b Ω = 2|HSO|b Ω = 2〉 = +A(R). (1)

Ω is the projection of the total electronic angular momen-
tum on the molecular axis. This description is not valid
for the asymptotic part of the potential, that is not exam-
ined in this paper, but it is chosen for its simplicity and
the direct comparability with previous analysis.

Additionally, the spin-orbit interaction leads to a non-
diagonal matrix element ζ(R) coupling the Ω = 0+ com-
ponent of the b state with the A state:〈

b 3Πu(0+
u )
∣∣HSO

∣∣A 1Σ+
u

〉
= ζ(R). (2)

A brief discussion on the asymptotic behaviour of equa-
tions (1, 2) and the connection of the atomic spin-orbit
splitting of the 4p 2P to the parameter A will be given in
Section 6. For states with total angular momentum J and
projection Ω, the diagonal part of the rotational operator
can be evaluated as [12]:

〈
JSΩΣ

∣∣HROT
∣∣ JSΩΣ〉 =

h̄2

2µR2

×
[
J(J + 1)−Ω2 + S(S + 1)−Σ2

]
(3)

where S and Σ are respectively the total electron spin and
its projection on the molecular axis, and µ the reduced
mass of the system. The non-diagonal elements, referred
to as spin-uncoupling terms [12] mix the different Ω com-
ponents of the b state, giving in the present case:

〈
b JSΣ,Ω

∣∣HROT
∣∣ b JSΣ + 1, Ω + 1

〉
=

h̄2

2µR2

×
√
J(J + 1)−Ω(Ω + 1)

√
S(S + 1)−Σ(Σ + 1). (4)

Other relativistic couplings might contribute significantly
to the energy, although with much smaller magnitude than
spin-orbit and rotational couplings. Among them, ma-
trix elements of the spin-spin coupling HSS and the spin-
rotational coupling HSR can be evaluated as follows [12]:〈

JSΛΩ
∣∣HSS

∣∣ JSΛΩ〉 = ε[3Σ2 − S(S + 1)]〈
JSΛΩ

∣∣HSR
∣∣ JSΛΩ〉 = γ

[
Σ2 − S(S + 1)

]〈
JSΛΩ

∣∣HSR
∣∣ JSΛΩ + 1

〉
= (γ/2)

×
√
J(J + 1)−Ω(Ω + 1)

√
S(S + 1)−Σ(Σ + 1) (5)

where ε and γ depend onR. These elements obviously van-
ish for the A state (S = 0) but not for the b state (S = 1).
The influence of the spin-spin and spin-rotational coupling
are expected to be small compared to the spin-orbit cou-
pling. In the case of HSR the order of magnitude is given
by γ ∝ (me/mn)ζ, where me and mn are the electron
and neutron mass, respectively [12]. With ζ ≈ 19 cm−1

for K2 [22], one finds γ ∼ 0.01 cm−1. The rotational con-
stant of the b 3Πu state is approximately 0.057 cm−1 [22].
Therefore, the influence of γ can be of a significant magni-
tude, although small compared to A and ζ, which are both
of comparable magnitude. Λ-doubling contribution is not
considered in the present model, as it is not observed in
the experimental spectra.
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Fig. 2. Example of observed bands from transitions b ← X in 39K2 and A ← X in 39−41K2 (both with P- and R-branch).
The few lines indicated by arrows are assigned to the R-branch of the coupled system A(v = 18) ∼ b(v = 28) based on the
deperturbation analysis (compare Sect. 5). The R-branch dies out at those J ′′ values due to the thermal population, but from
the P-branch, only J ′′ = 26, 27 are seen in this range. The ∗ symbol marks a remaining unassigned line.

The only influence of the spin-spin interaction is an
unequal spacing of the fine structure components of the
b 3Πu state, which will be observable only if detailed data
are available for all components of the b state.

The HSO term in the Hamiltonian is the only one
which mixes the singlet A state to the triplet b state. The
diagonalization of the 4×4 total Hamiltonian for the cou-
pling of the electronic states A and b, written in Hund’s
case a, for a given J , results in rovibrational levels, with
more or less singlet and triplet character. Consequently,
this induces a transition moment from the X 1Σ+

g ground
state towards all levels of the coupled (A ∼ b) system.
Even when the admixture of the singlet character is small,
X 1Σ+

g → b 3Πu(0+
u ) excitations should be observable

with a sufficiently sensitive experimental set-up.

3 Experimental set-up and spectra
for the (A ∼ b← X) transitions

In our experiment we are using a molecular beam appa-
ratus. The molecules are produced by evaporating potas-
sium at 400 ◦C in an oven. The potassium vapor expands
through a nozzle of 300 µm diameter, which is heated to
about 430 ◦C to avoid clogging. The potassium dimers
are predominantly produced in the X 1Σ+

g vibrational
ground state (v = 0), since the potassium vapor under-
goes a supersonic expansion, which cools the internal de-
grees of freedom of the molecule. The collimation ratio of
the beam is approximately 1 000, which leads to a Doppler
width of 1 MHz after excitation with light from a diode

laser. K2 molecules are detected by observing their total
fluorescence with a red sensitive photomultiplier (Hama-
matsu R 943-02). Excitation wavelengths were varied from
800 nm to 840 nm. The laser intensity required for a
sufficient signal-to-noise ratio is below 10 mW. The fre-
quency calibration is performed by a temperature stabi-
lized marker cavity with a free spectral range of 150 MHz
and the I2 absorption spectrum [28]. The uncertainty of
this calibration is estimated to 0.005 cm−1. The fluores-
cence to be detected spreads from the excitation wave-
length to roughly 1.2 µm. The tube is only sensitive up
to ∼900 nm, which limited the low frequency part of
the spectral detection window. To suppress laser stray
light, we used a color glass (Schott RG 850 3 mm, cut-off
λ < 850 nm) and an interference filter (center wavelength
λ = 878 nm, FWHM = 51 nm). It was not possible to
record spectra with excitation wavelength above 840 nm
while having a reasonable suppression of laser stray light.

An example of a typical spectrum is given in Figure 2,
showing among others a fully developed band of the state
3Πu(0+

u ). Actually similar observations were possible for
several bands of the b state. The b 3Πu(0+

u ) hyperfine split-
ting present in these bands of the b state [29] is not re-
solved in this scan. It will be neglected in the following
analysis, since the hyperfine structure leads to fairly sym-
metric line profiles and has no significant influence on the
frequency of the transition. We observed vibrational lev-
els of the A state from vA = 13 to 22, and of the b state
from vb = 24 to 31. Rotational quantum numbers J ′ up to
35 were reached. The range of observations was limited to
high vibrational levels v by the decreasing Franck-Condon
factors for transitions with v′′ = 0 in the ground state.
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Fig. 3. Dataset of the A 1Σ+
u state used for the deperturbation

analysis. Different authors are denoted by different symbols.
The experimental uncertainties are 0.015 cm−1, 0.04 cm−1 and
0.005 cm−1 for Jong et al. [22,25], Ross [30], and Amiot [26],
respectively.

Fig. 4. Same as Figure 3 for the b 3Πu state. The experimental
uncertainty for the term energies given by Kim [23] is 0.5 cm−1.

To low v, we are limited by the sensitivity of our photo-
multiplier.

To our knowledge, these are the first observations of
fully developed bands of b 3Πu−X 1Σ+

g transitions in K2.
Actually, the present data are complementary to previous
observations. An overview of the data available is shown
in Figures 3 and 4. The present observations (squares in
the figures) are spanning a range of vibrational levels un-
explored up to now, with a rather dense set of J ′ values
between 0 and 35 for both the A and b states. For the
A state, published term energies already cover a rather
dense grid. Levels in the range from vA = 0 to 12 are
available from Jong et al. [22]. Ross [30] and Amiot [26]
provided us spectroscopic data for the A state measured
by Fourier transform spectroscopy.

For the b state the situation is less favorable as only
irregularly scattered term energies are known. Some term
energies of perturbed levels of the b state were provided
by Ross [30] and Li [25]. The latter were obtained under
the experimental conditions described in [22]. The main
part of the data belongs to the Ω = 0+ fine structure
component, which has in general the largest singlet ad-
mixture and therefore is the component of the b state
to be excited most easily from the X 1Σ+

g ground state.
Only about 20 transitions to the Ω = 1, 2 components are
known presently. Therefore, the information about the fine
structure splitting and the coupling constant A is limited.
Additionally, nearly no term energies for levels below the
minimum of the A state (see Fig. 1) are available besides
the measurements given by Kim et al. in [23], which have
large uncertainties of about 0.5 cm−1.

All these data are put together to build up a com-
prehensive dataset, that we will use in the next sections
for the deperturbation analysis. The data contain rota-
tional quantum numbers J ′ below 40, except in the range
12 ≤ vA ≤ 18 for which transitions with rotational quan-
tum numbers J ′ up to 100 are known [30]. For the triplet
states no energies of such high J ′ levels are known, so a
precise deperturbation in this region of quantum numbers
is not possible. We restricted the dataset to J < 40 for the
detailed analysis of the coupled states A and b, where the
Ω = 0+

u component will be the best determined compo-
nent of the triplet manifold. However the location of the
potential minimum of the b state will be affected by the
large uncertainties of the data of reference [23].

4 Local deperturbation analysis of the spectra

Because rotational constants of different electronic states
typically differ, rotational ladders of such states cross at
a common J ′. In the presence of a coupling between both
ladders, the interaction increases with decreasing energetic
spacing of levels with the same value of J ′, then repelling
each other. This simplified picture has suggested a widely
used approach to deperturb the spectra of coupled states
(see for example Ref. [31]), based on the assumption that
a vibrational level is perturbed by a limited set of neigh-
bouring levels, and the influence of levels being further
separated is neglected. The size of the subset remains lim-
ited to a few perturbing levels. Here we will report on
a local deperturbation approach, which is described with
some details below, in order to emphasize the differences
with the global one, which is applied in the next section.
The starting point is the equation of unperturbed rovi-
brational levels of an electronic state with given Ω using
a Dunham-type expansion of term energies E(v, J ′) [32]:

EJ′,v = Te +
∑
l,k

Ylk(v + 1/2)l
[
J ′(J ′ + 1)−Ω2

]k
(6)

where Yij are the usual Dunham parameters. The Hamil-
tonian operator for two rovibrational levels (J ′, vA) and
(J ′, vb) coupled by spin-orbit and rotational interactions
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Hloc(J
′, vA, vb) =

A 1Σ+
u b 3Π

0+
u

b 3Π1u b 3Π2u

0
BB@

EJ′vA ζ0〈vA|vb〉 0 0

ζ0〈vA|vb〉 EJ′vb +W00 −A0 − γ + ε γ
2

√
2X +W01 W02

0 γ
2

√
2X +W01 EJ′vb +W11 − 2(γ + ε) γ

2

√
2X − 4 +W12

0 W02
γ
2

√
2X − 4 +W12 EJ′vb +W22 +A0 − γ + ε

1
CCA

(7)

(Eqs. (1–4)) leads to the following matrix structure:

see equation (7) above,

with X = J ′(J ′+1). The spin-orbit functions A and ζ are
assumed to be independent of R, therefore constants A0

and ζ0 appear, the latter multiplied by an overlap 〈vA|vb〉
between vibrational wavefunctions. The WΩΩ′ terms cou-
ple the components of the b state according to equa-
tion (4). The whole expression of the matrix elements has
been already given in reference [31]. W02 appears through
higher order centrifugal distortion. The contributions of
spin-spin and spin-rotation terms (Eq. (5)) are also in-
cluded.

The structure of the full Hamiltonian matrix used for
the local deperturbation analysis is schematically drawn
in Figure 5. The central diagonal block corresponds to
the matrix in equation (7) for the pair of levels (J ′, vA)
and (J ′, vb) under consideration, while the other diagonal
blocks correspond to neighbouring pairs of interacting lev-
els (ṽA, ṽb). All diagonal blocks are interacting through off-
diagonal elements (hashed area) connectingΩ = 0 compo-
nents. In the present work, we set up a matrix containing
five (Fig. 5 shows only three) vibrational levels of the A
and b states energetically centered around the considered
level, leading to a 20 × 20 Hamiltonian matrix. A set of
eight Dunham parameters for the electronic states is used,
i.e. k = 0, 1 for 0 ≤ l ≤ 3 in equation (6), giving the term
energy (k = 0) and the rotational constant (k = 1) up to
the third power in (v + 1/2). In each iteration centrifu-
gal distortion parameters were calculated based on the
RKR potential following Hutson [33] and the energy lev-
els corrected for centrifugal distortion effects for the next
iteration step.

Twenty off-diagonal coupling elements are present to
describe the local perturbation, all proportional to ζ0 and
to an overlap integral. Term energies are deduced from
the diagonalization, and are transformed into transition
energies using the Dunham parameters of the X 1Σ+

g

state [34].
By means of a non-linear fitting procedure [35], the

Dunham parameters and coupling parameters are varied
to reduce the sum χ2 =

∑
(Eobs −Ecal)2/∆2 of squared

deviations between observedEobs and calculatedEcal level
energies, weighted by the square of the experimental un-
certainties ∆. The overlap integrals 〈vA|vb〉, are calculated
at each iteration from eigenfunctions in a RKR potential
determined by the current values of Dunham parameters.
These integrals depend only slightly on J ′. Therefore, they
are computed in steps of 20 rotational quanta, and a linear
interpolation between them were found accurate enough.

Fig. 5. Schematic representation of the Hamiltonian matrix
to be diagonalized in the local deperturbation approach. Each
diagonal block has the structure defined by equation (7). The
labels 0, 1, and 2 hold for Ω values in the b state, and Σ for the
A state. Off-diagonal hatched squares couple elements between
different pairs of vibrational levels.

With this fitting algorithm, a description of the
dataset with a σ (reduced chi-squared [36]) σ =√
χ2/(Nobs −Npar) ≈ 4 was achieved. Nobs and Ncal are

the numbers of observed transitions and adjusted parame-
ters, respectively. The deviations of the lowest vibrational
levels of the A state are mainly responsible for the large σ.
For example, the rotational levels of vA = 0 calculated
by the fitting program remained shifted systematically by
about 0.1 cm−1 to lower energies with respect to the ob-
served ones. Excluding vA = 0 from the fit improved the
fit to σ ≈ 2.6. Neither a larger number of Dunham pa-
rameters, nor the introduction of R-variation of the non-
diagonal spin-orbit coupling (R-centroids expansion):〈

b 3Πu(0+)
∣∣HSO

∣∣A 1Σ+
u

〉
= ζ〈va|vb〉+ ξ〈va|R|vb〉 (8)

or v-dependent variations of the spin-orbit couplings ac-
cording to:〈

b Ω = 0, 2
∣∣HSO

∣∣ b Ω = 0, 2
〉

= ∓A∓ α(v + 1/2) (9)

improved the fitting results significantly. The R-centroids
were calculated with the same RKR procedure used to
calculate the overlap integrals. The unsatisfactory descrip-
tion of the potential minimum of the A state is surprising,
because a power expansion like the Dunham series should
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H =

A 1Σ+
u b 3Π

0+
u

b 3Π1u b 3Π2u

0
BB@
TΣ0 + V Σ0 + wΣ0 wΣΠ00 0 0

wΣΠ00 TΠ0 + V Π0 + wΠ0 wΠΠ01 0
0 wΠΠ01 TΠ1 + V Π1 + wΠ1 wΠΠ12

0 0 wΠΠ12 TΠ2 + V Π2 + wΠ2

1
CCA

(11)

be well adapted to this part of the potential, where the
anharmonicity is low. It will turn out in the next section,
that the limited dimension of the interaction matrix is the
main reason for this failure. This prevents any influence
of energetically far lying levels, which are in the present
case the lowest triplet levels. The potential minimum of
the A state is more sensitive to such effects than the other
parts of the potential, due to the many b levels lying be-
low, whereas in other regions this effect averages out due
to perturbing levels below as well as above the studied
one.

5 Global deperturbation

The failure of the present local deperturbation approach
means, that an extension is needed where matrices sig-
nificantly larger than 20× 20 have to be diagonalized for
each observed level at each fit iteration. Besides the qual-
ity of the fit, there is no obvious criterion where to trun-
cate the number of perturbing levels. An alternative pro-
cedure consists, at each iteration step, in solving the set
of four coupled Schrödinger equations in order to extract
the whole eigenvalue spectrum of the coupled system. In
this approach interactions among all vibrational levels are
taken into account simultaneously. We choose the Fourier
Grid Hamiltonian (FGH) method [37], which has proven
to be well adapted to this kind of calculations [38,39].

A detailed presentation of the FGH method can be
found for instance in [11], and we recall here only its main
aspects. The total Hamiltonian H = T + V for a single
electronic state with potential energy operator V and ki-
netic energy operator T, is represented on a grid of length
L with N equidistant points in R coordinate, leading to
the matrix elements [38]:

Vij = V (Ri)δ(i− j)

Tii =
π2

µL2

N2 + 2
6

Tij = (−1)i−j
π2

µL2

1
sin2[(i− j)π/N ]

· (10)

Such a N ×N matrix representation is equivalent to the
choice of a basis of N plane wavefunctions in the mo-
mentum space, with N discrete values of momentum.
For p interacting states, the Hamiltonian matrix has a
(pN)× (pN) dimension, and is structured for the present
case (p = 4) as:

see equation (11) above,

where the indices of the elements are related to the Ω val-
ues. In this expression, elements TΩ and VΩ are N × N
submatrices defined by equation (10). The N × N diag-
onal blocks wΩΩ′ contain matrix elements coupling the
4 electronic states, and are deduced from equations (2, 4)
and the nondiagonal part of equation (5), while wΩ blocks
contains the diagonal parts of equations (1, 3, 5). It is
noteworthy, that the matrix elements Wij in equation (7)
are averages over the internuclear distance R by the vi-
brational motion, while wΩ is built up from the explicit
values for given R.

Such a matrix is diagonalized, and provides eigenen-
ergies and eigenfunctions for rovibrational levels of the
coupled systems. When the coupling between a group of
levels is efficient, the corresponding vibrational wavefunc-
tions will have a complicated structure, resulting from the
superposition of wavefunctions from the individual lev-
els. Example of such wavefunctions can be found in refer-
ences [38,39].

Matrix elements in equation (11) can be rearranged,
in order to bring together matrix elements from blocks re-
lated to the same couple (i, j) of grid points. This provides
the schematic picture of the structure of the potential en-
ergy matrix, displayed in Figure 6 for a few (i, j) pairs,
giving the coupling between the electronic states at such
pairs. The similarity with the local matrix of Figure 5 is
obvious, except that there is no direct coupling between
Ω = 0 and Ω = 2 components of the b state. This scheme
shows that the representation of the Hamiltonian is now
achieved on a complete basis set, instead of being limited
to a small subset of vibrational wavefunctions. As visible
in equation (10), the kinetic energy matrix is non-local,
and has not a simple structure as the one shown in Fig-
ure 5.

In order to check the influence of the perturbations
between distant A and b levels, we performed a diago-
nalization of the H matrix in equation (11) for J = 0
(i.e. a two-coupled state calculation, with Ω = 0), using
the RKR potentials and the interaction parameters deter-
mined in the local approach. The grid applied in the FGH
method is chosen according to the maximum momentum
to be represented in the calculation, deduced from the
hashed zone in Figure 1. A number of equidistant points
N < 120 covering the range of internuclear distances
3.5 a.u. < R < 13.5 a.u. is sufficient. Only the 160 lowest
eigenvalues of the A ∼ b mixed system are calculated, in
order to shorten the computing time for the diagonaliza-
tion. In Figure 7, the singlet component of the coupled
system eigenvectors for J ′ = 0 is represented for levels lo-
cated in the bottom of the b potential, up to the bottom
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Fig. 6. Schematic representation of the 4N × 4N Hamil-
tonian matrix to be diagonalized in the global deperturba-
tion approach for the present A ∼ b system. Only three
blocks corresponding to three arbitrary grid points Nj , Nj ± 1,
(2 < Nj < N − 1) are represented here for illustration. The
labels 0, 1, and 2 hold for Ω values in the b state, and Σ for the
A state. Diagonal matrix elements Σ, 0, 1, and 2 contain con-
tributions from both kinetic and potential energy. Off-diagonal
contributions of the kinetic energy are denoted by TΣ , T0, T1,
T2. Remaining pictured areas without symbols are elements
coupling the 4 electronic states (Eqs. (2, 4, 5)).

Fig. 7. Singlet component of eigenvectors of the A ∼ b coupled
states in K2. A and b labeling is assigned when this component
is respectively larger or lower than 1/2.

of the A potential. Strong and localized perturbations are
visible for 2 levels (around 11 300 and 11 700 cm−1), when
the triplet contribution to the singlet component increases
abruptly and the reverse happens for the triplet compo-
nent. But, it is worth noticing that levels located below
the bottom of the A state have a non-negligible (≈10−4)
singlet character. Even more striking is the energy shift
of these levels induced by the coupling with all other A
levels, when compared to their energy deduced from a di-
agonalization where the coupling term w00 is put to zero.

Fig. 8. Computed energy shift of the lowest b levels induced
by the coupling, when compared to their energy computed for
vanishing coupling.

Figure 8 shows that a shift of 0.2 cm−1 is predicted for
the vb = 0 level of the b state. This preliminary calcula-
tion confirms that a global analysis of the perturbations
is necessary, as all levels are interacting together.

To adjust the potential curves for fitting the exper-
imental data, we chose an analytical expression for the
potential curves V Σ0 and V Π0,1,2 in equation (11). The an-
alytical form is divided into three parts, connected at the
internuclear distances Ri and Ro (Ri < Ro). The middle
part from Ri to Ro around the potential minimum roughly
at Rm is given by the series [10]:

V (R) =
∑
i

ai

(
R−Rm

R+ bRm

)i
, i ≥ 0. (12)

b is a convergence improving factor fixed for each poten-
tial curve. The coefficients ai determine the shape of the
potential and are adjustable by a fitting procedure compa-
rable to the one described in Section 4. The internuclear
distance Rmin at the potential minimum can be calculated
from equation (12), values for the final set of parameters
ai are given in Table 1.

The same coefficients ai were used for all fine struc-
ture components of the b state. The values of Ri,o were
chosen such that the potential energy V (Ri,o) is slightly
higher than the largest term energy included in the data
set. Therefore, the part of the potential curve for which
spectroscopic information is included in the fit, is com-
pletely determined by equation (12). Inner and outer part
only ensure a correct behaviour of the wave function in the
classical forbidden region, and should not be used for fur-
ther spectroscopic predictions outside the range studied
here.

For internuclear distances R < Ri, the repulsive inner
part of the potential was described by the expression

Vi(R) = Aie−Bi(R−Ri) for R < Ri. (13)

Parameters Ai and Bi were chosen to make the potential
continuous at R = Ri, as well as its first derivative.
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Table 1. Values of parameters for the A 1Σ+
u and b 3Πu states

of K2, and their interaction. Rm, Ri, Ro, and b are kept during
the fitting procedure. Parameters a0 to a9, A, ζ0, and ζ2 are
provided by the global fitting procedure. Values for the location
of potential minimum Rmin, the crossing point RAb, and the
energy difference between potential minimum ∆Ab for the A
and b states, deduced from the fitted curves, are also displayed,
and compared to previous determinations. Estimated standard
deviations are given in parenthesis.

A 1Σ+
u b 3Πu

Rm 4.55078 Å Rm 3.89453 Å

Ri 3.55 Å Ri 2.95 Å

Ro 6.55 Å Ro 6.50 Å

b 0.27 b −0.28

a0 11 107.1405 cm−1 a0 9 912.9473 cm−1

a1 0.10074654×103 cm−1 a1 0.50271825×103 cm−1

a2 0.48011869×105 cm−1 a2 0.18377386×105 cm−1

a3 −0.3013653×105 cm−1 a3 0.7978306×104 cm−1

a4 −0.253938×105 cm−1 a4 0.747073×104 cm−1

a5 0.160462×106 cm−1 a5 0.377933×105 cm−1

a6 −0.640140×106 cm−1 a6 −0.293825×105 cm−1

a7 0.118110×106 cm−1 a7 −0.166277×106 cm−1

a8 0.224542×107 cm−1 a8 −0.972435×105 cm−1

a9 0.10070×107 cm−1

A 21.3145(80) cm−1

(21.75(8) cm−1 [22])

ζ0 18.3021(50) cm−1 (18.64(9) cm−1 [22])

RSO 4.681965(40) Å

ζ2 33.635(10) cm−1Å−2

RΣmin 4.5447 Å RΠmin 3.8564 Å

RAb 4.755 Å

4.735 Å [44]

∆Ab 1 197.7(1) (5)∗ cm−1

1 196.1(18) cm−1 [22]

1 198.8(1) cm−1 [23]

1 185 cm−1 [44]

∗ Error from data in [23].

For the long-range part of the potential with R > Ro
the asymptotic form

Vo(R) = D − C3

R3
− C6

R6
+Eex(R) for R > Ro

Eex(R) = −Aexe−BexR (14)

was used. Values for asymptotic coefficients, C3 and C6

were taken from [40], while Aex and Bex were used to
connect the middle and outer part of the potential in a
continuous and differentiable way. D is the energy of the
dissociation limit, calculated here from the dissociation
energy of the ground state [41] and the transition frequen-
cies of the atomic D1 and D2 lines [42]. It is important

to notice that parameters C3, C6, D, Aex, Bex, Ai, and
Bi are not fitting parameters. Their values are reported
in the Appendix.

In addition to the coefficients ai in equation (12), the
coupling matrix elements in equation (11) were varied by
the fitting program using the same package [35] as for the
local fit. Fits with 9 and 10 parameters ai for the A and
b state, respectively, and two spin-orbit parameters A and
ζ (Eqs. (1, 2), independent of R) improved the description
of the experimental results significantly to σ ≈ 1.8. This
is a strong support for the need of a global approach,
since the local deperturbation one reached only σ ≈ 4
with a comparable number of Dunham parameters and the
same couplings between the four electronic components as
it was discussed in Section 4. Especially, the significant
deviations for the lowest vibrational levels in the A state
are drastically reduced, which is in our opinion due to the
influence of the lower levels of the triplet state, which are
taken into account in this approach now.

In extended fits the spin-rotational coupling (Eq. (5))
was introduced, which leads to a further improvement
(σ ≈ 1.4). The ratio of the fitted parameters ζ and γ was in
very good agreement with the expected value as discussed
in Section 2. The spin-spin coupling was neglected, since
only very few term energies of the Ω = 1, 2 components of
the b state are contained in the dataset, which results in
very limited knowledge of the energetic separation of the
three potential curves.

In a third fit a R-dependence of the spin-orbit in-
teractions (Eqs. (1, 2)) was allowed instead of the spin-
rotational coupling. Based on the results of ab initio
calculations by Meyer for Na2 [43], the variations of the
constants A and ζ with R were approximated in the ex-
plored range of R by parabolas with their minimum at
RSO near the crossing point of A and b state. Only the
dependence of ζ on the internuclear distance turned out
to be significant and was described by:

ζ(R) = ζ0 + ζ2(R −RSO)2. (15)

All three parameters ζ0, ζ2, and RSO were adjusted by
the fit. The σ of the fit reached a value below 1.2, which
corresponds to a variance s =

√
Nobsσ2/

∑
∆−2 [36] of

7.5 × 10−3 cm−1. The description of the experimental
data did not improve further by additional spin-rotational
coupling. Spin-rotational coupling and variation of ζ with
R probably cannot be separated, since too few data are
available for the Ω = 1, 2 components of the b state. The
range of internuclear distance R, where the derived R-
dependence of ζ is applicable, is much smaller than the
R-range of the determined potentials, since the influence
of ζ(R) is restricted to regions of non-vanishing overlap
between the wavefunctions in both potentials.

The obtained parameters of this last fit are given in
Table 1. This set of parameters reproduces the exper-
imental data in the best way of all fits and, on aver-
age, essentially within the estimated experimental un-
certainties. Furthermore, transition frequencies could be
predicted in the vicinity of observed transitions, that al-
lowed the assignment of yet unidentified transitions with
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deviations between observed and measured frequencies be-
low 0.005 cm−1 (e.g. Fig. 2, indicated by arrows).

6 Discussion

In this paper we have described two fundamentally dif-
ferent approaches for the deperturbation of spectra of di-
atomic molecules on the example of the K2 molecule to
derive a set of parameters by non-linear fitting, that will
reproduce the experimental data. The first discussed local
deperturbation (Sect. 4) uses Dunham-type parameters
to describe the energies of the molecular levels and takes
into account the interaction between a limited number of
perturbing levels only. This approach did not lead to a
satisfying fit.

By the utilization of a potential fit and the FGH
method to calculate the eigenvalues of the coupled system
in the basis of electronic states, the results of the fit im-
proved significantly. This is especially remarkable, because
no new couplings compared to the local approach were
considered, but only the yet neglected perturbations by
energetically far lying levels were taken into account. For
the levels in the minimum of the b state we have shown,
that perturbations can sum up to energy shifts, which are
many times larger than the experimental accuracy of typ-
ical laser spectroscopy experiments (Fig. 8). Therefore, we
think the large difference in the results of both approaches
must be attributed to non-local couplings. Additionally,
this shows the necessity of a global deperturbation analy-
sis even for moderately perturbed systems, when the ex-
perimental accuracy is high.

The FGH allows easily the implementation of differ-
ent, especially R-dependent interactions between the elec-
tronic states. With this degree of freedom for the spin-
orbit coupling between A and b state (Eqs. (2, 15)) it was
possible to improve the fit further, nearly to a description
of the experimental data within their uncertainties, i.e. a
σ of 1.2.

The spin-orbit coupling parameters (Eqs. (1, 2)) ob-
tained from the fit can be compared with the atomic spin-
orbit splitting ∆ for the 4p state of the potassium atom.
From the theory of long-range interaction (e.g. [40]) one
finds

√
2∆/3 for the magnitude of the spin-orbit coupling

between two Ω = 0 components of A and b states. This
asymptotic value corresponds to ζ0 used here in equa-
tion (2). With ∆ = 57.6848(1) cm−1 [42] the long range
theory predicts ζ ≈ 27.2 cm−1 at large R. The determined
coupling function with ζ0 and ζ2 parameters cannot be
used for a direct comparison, because it has not the appro-
priate asymptotic behaviour. But the sign of ζ2 indicates
that ζ increases for large R, starting from ζ0 =18.3 cm−1

at 4.68 Å.
For the comparison of the molecular fine structure

splitting A (Eq. (1)) with the atomic value ∆ the best
is to compare the splitting between the Ω = 0+

u and 2u
component of the b state, since both subspaces of elec-
tronic states at a s+p asymptote are fully included in the
deperturbation analysis, while the Ω = 1u space (in total

three dimensional for the s + p asymptote) is truncated
to one state. The asymptotic formulas (compare [40])
predict for the inner part of the potential a splitting of
2∆/3 ≈ 38.5 cm−1, which is in good agreement with the
value of 2A ≈ 42.6 cm−1 in Table 1. Therefore, the R
dependence of A seems to be weak, which was also indi-
cated by the low significance of a function A(R) instead
of A = const in the fit (Sect. 5).

The present determinations of interaction parameters
yields a difference of 1.7% with previous experimental val-
ues reported by Jong et al. [22]. Such an agreement is sat-
isfactory, keeping in mind that the value of reference [22] is
obtained after averaging over all vibrational levels studied
with a local deperturbation approach, while in the present
work, interaction parameters are extracted from a single
analysis of all concerned vibrational levels. Furthermore,
the agreement of the pseudopotential calculations of ref-
erence [44] with the present potential curves is good, as
illustrated by the location of the crossing point RAb be-
tween the A and b states, and by the energy difference
∆Ab of the bottom of their well.

In a next step, already known data [26] of higher vibra-
tional levels of the A state will be included to extend the
potential to larger internuclear distances. Since the exper-
imental knowledge of the b state is rather poor for higher
energies, this analysis will probably be restricted to a one
channel calculation for the 1Σ+

u state only. Experiments to
obtain data within the existing gap to the asymptotic lev-
els measured by photoassociation spectroscopy [40] and
to perform a vibrational assignment of those levels are
in progress in our group. They will use a Franck-Condon
pumping scheme as applied successfully in experiments
with Na2 [45] to reach asymptotic states of the well bound
molecule.

The non-negligible mixing of A 1Σ+
u and b 3Πu states

predicted for levels below the minimum of the A state
(Fig. 7) can be of experimental interest, since it gener-
ates an electric dipole transition moment to the X 1Σ+

g

ground state. In principle, the spectroscopic analysis of
this part of the b state potential with a single laser ex-
citation should be possible. Those weak transitions to a
long-lived electronically excited state can also be used for
matter wave interferometry with higher resolution com-
pared to our present results [14].
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Critical reading of the manuscript by C. Amiot is also grate-
fully acknowledged. This work was supported by the Deutsche
Forschungsgemeinschaft within the SFB 407, and by the joint
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Appendix

We report for completeness in Table 2, the values for pa-
rameters describing the potential curves outside the range
of the present spectroscopic study. Whereas values for C3,
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Table 2. Parameters used in the present analysis, for the rep-
resentation of the potential curves outside the [Ri, Ro] interval.

A state b state

C3 [40] 16.872 a.u. 8.436 a.u.

C6 [40] 9 365 a.u. 6 272 a.u.

D [41,42] 17 435.860(75) cm−1 17 493.570(75) cm−1

Aex 0.2401114×104 cm−1 0.8793316×104 cm−1

Bex 0.3950582 Å−1 0.6137710 Å−1

Ai 0.133073137×105 cm−1 0.130439338×105 cm−1

Bi 0.38414294 Å−1 0.63223242 Å−1

C6, and D are taken from the literature, values for Aex,
Bex, Ai, and Bi are reevaluated after each iteration, to en-
sure continuity of the potential functions during the whole
fitting process. These parameters cannot be used for any
spectroscopic prediction.
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45. M. Elbs, O. Keck, H. Knöckel, E. Tiemann, Z. Phys. D 42,

49 (1997).


